
International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

“Signal Generator with Graphical User Interface
Control using Wireless Sensor Technology”

Keshavamurthy
1
, Dr.Dharmishtan K Varughese

2
, Dr. N.J.R Muniraj

3

1
Faculty, Atria Institute of Technology, Bangalore, INDIA-560024,

Email: keshavamurthy_s@yahoo.com,Ph: +91- 9844662014
2
Professors, Department of EC, Karpagam College of Engineering, Coimbatore, INDIA.

3
Principal, Tejaa Shakthi Institute of Technology for Women, Coimbatore, INDIA.

Abstract — In the f ields of communications, signal processing, and in Electrical Engineering more generally, a signal is any time-varying or

spatial-varying quantity. In the physical world, any quantity measurable through time or over space can be taken as a signal. Within a complex

society, any set of human information or machine data can also be taken as a signal. Signal processing is an area of Electrical Engineering and

applied Mathematics that deals w ith operations on or analysis of signals, in either discrete or continuous time to perform us eful operations on those

signals. Signals of interest can include sound, images, time-varying measurement values and sensor data, for example biological data such as

Electrocardiograms, control system signals, telecommunication transmission signals such as radio signals, and many others. Signals are analog or

digital electrical representations of time-varying or spatial-varying physical quantities. So w e can also realize how important is signal processing .It

can not only convert data from one form (analog) to another (digital) and facilitate its communication and other needs but as w ell vary parameters

provided to practical circuits and appliances So with the context to signals we do face certain problems that we aim to solve:(1). We do f ind ways to

share data with other related hardware and at a distance w ith modern transmission protocols such as I2C and SPI. (2). Conversion of data from

analog to digital and vice versa. (3). Varying power or voltage signal applied to an appliance so that we can save power consumption. (4). The

development of a unit that can intelligently read the PC’s request at one end and vary the data and signals as and when required.

 Key word—Dock light, Zigbee, Nanowatt, I2C Mode, Encrypting, Watchdog and Graphical User Interface.

1. Signals generated

In normal embedded development we use input/output

signals through I/O Ports, AD Converters, PWM signals

and communication protocols I2C, RS232 and SPI. Lot of

time is spent on generating above signals / debugging SW

modules which deal with the above signals. The

embedded signal generator with GUI generates signals

from a microcontroller.

2. Block diagram and its description

This family of devices offers the advantages of all PIC18

microcontrollers – namely, high computational

performance at an economical price with the addition of

high-endurance, Enhanced Flash program memory. In

addition to these features, the

PIC18F2455/2550/4455/4550 family introduces design

enhancements that make these microcontrollers a logical

choice for many high-performances, power sensitive

applications.

This family of microcontrollers is built with the

Nanowatt Technology and hence all of the devices in

the PIC18F2455/2550/4455/4550 family incorporate a

range of features that can significantly reduce power

consumption during operation.

Figure1.1. Transmitter block diagram

Figure1.2. Receiver block diagram

mailto:keshavamurthy_s@yahoo.com

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

• Alternate Run Modes: By clocking the controller from

the Timer1 source or the internal oscillator block, power

consumption during code execution can be reduced by

as much as 90%. Multiple Idle Modes: The controller

can also run with its CPU core disabled but the

peripherals still active. In these states, power

consumption can be reduced even further, to as little as

4%, of normal operation requirements.

• On-the-Fly Mode Switching: The power-managed

modes are invoked by user code during operation,

allowing the user to incorporate power-saving ideas

into their applications software design.

• Low Consumption in Key Modules: The power

requirements for both Timer1 and the Watchdog Timer

are minimized.

Devices in the PIC18F2455/2550/4455/4550 family

incorporate a fully featured Universal Serial Bus

Communications module that is compliant with the

USB Specification Revision 2.0. The module supports

both low-speed and full-speed communication for all

supported data transfer types. It also incorporates its

own on-chip transceiver and 3.3V regulator and

supports the use of external transceivers and voltage

regulators. All of the devices in the

PIC18F2455/2550/4455/4550 family offer twelve different

oscillator options, allowing users a wide range of

choices in developing application hardware. Besides its

availability as a clock source, the internal oscillator

block provides a stable reference source that gives the

family additional features for robust operation:

• Fail-Safe Clock Monitor: This option constantly

monitors the main clock source against a reference

signal provided by the internal oscillator. If a clock

failure occurs, the controller is switched to the internal

oscillator block, allowing for continued low-speed

operation or a safe application shutdown.

• Two-Speed Start-up: This option allows the internal

oscillator to serve as the clock source from Power-on

Reset, or wake-up from Sleep mode, until the primary

clock source is available.

 Port A: PORT-A is an 8-bit wide, bidirectional port. The

corresponding data direction register is TRISA. Setting a

TRISA bit (= 1) will make the corresponding PORTA pin

an input (i.e., put the corresponding output driver in a

high-impedance mode). Clearing a TRISA bit (= 0) will

make the corresponding PORTA pin an output (i.e., put

the contents of the output latch on the selected pin).

 Reading the PORTA register reads the status of the

pins, whereas writing to it, will write to the port latch.

The Data Latch (LATA) register is also memory

mapped. Read-modify-write operations on the LATA

register read and write the latched output value for

PORTA.

 The other PORTA pins are multiplexed with analog

inputs, the analog VREF+ and VREF- inputs and the

comparator voltage reference output. The operation of

pins RA3:RA0 and RA5 as A/D converter inputs is

selected by clearing or setting the control bits in the

ADCON1 register (A/D Control Register 1). Pins RA0

through RA5 may also be used as comparator inputs or

outputs by setting the appropriate bits in the CMCON

register.

Port B: PORTB is an 8-bit wide, bidirectional port. The

corresponding data direction register is TRISB. Setting a

TRISB bit (= 1) will make the corresponding PORTB pin

an input (i.e., put the corresponding output driver in a

high-impedance mode). Clearing a TRISB bit (= 0) will

make the corresponding PORTB pin an output (i.e., put

the contents of the output latch on the selected pin). The

Data Latch register (LATB) is also memory mapped.

Read-modify-write operations on the LATB register

read and write the latched output value for PORTB.

 Each of the PORTB pins has a weak internal pull-up.

A single control bit can turn on all the pull-ups. This is

performed by clearing bit, RBPU (INTCON2<7>). The

weak pull-up is automatically turned off when the port

pin is configured as an output. The pull-ups are

disabled on a Power-on Reset.

Port C: PORTC is an 8-bit wide, bidirectional port. The

corresponding data direction register is TRISC. Setting a

TRISC bit (= 1) will make the corresponding PORTC pin

an input (i.e., put the corresponding output driver in a

high-impedance mode). Clearing a TRISC bit (= 0) will

make the corresponding PORTC pin an output (i.e., put

the contents of the output latch on the selected pin).

 The Data Latch register (LATC) is also memory

mapped. Read-modify-write operations on the LATC

register read and write the latched output value for

PORTC. PORTC is multiplexed with several peripheral

functions. The pins have Schmitt Trigger input buffers.

RC1 is normally configured by configuration bit,

CCP2MX, as the default peripheral pin of the CCP2

module.

Port D: PORTD is an 8-bit wide, bidirectional port. The

corresponding data direction register is TRISD. Setting a

TRISD bit (= 1) will make the corresponding PORTD pin

an input (i.e., put the corresponding output driver in a

high-impedance mode). Clearing a TRISD bit (= 0) will

make the corresponding PORTD pin an output (i.e., put

the contents of the output latch on the selected pin). The

Data Latch register (LATD) is also memory mapped.

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Read-modify-write operations on the LATD register

read and write the latched output value for PORTD. All

pins on PORTD are implemented with Schmitt Trigger

input buffers.

 Each pin is individually configurable as an input or

output. Three of the PORTD pins are multiplexed with

outputs P1B, P1C and P1D of the Enhanced CCP

module.

Port E: For 40/44-pin devices, PORTE is a 4-bit wide

port. Three pins (RE0/RD/AN5, RE1/WR/AN6 and

RE2/CS/ AN7) are individually configurable as inputs or

outputs. These pins have Schmitt Trigger input buffers.

When selected as an analog input, these pins will read

as ‘0’s. The corresponding data direction register is

TRISE. Setting a TRISE bit (= 1) will make the

corresponding PORTE pin an input (i.e., put the

corresponding output driver in a high-impedance

mode). Clearing a TRISE bit (= 0) will make the

corresponding PORTE pin an output (i.e., put the

contents of the output latch on the selected pin). TRISE

controls the direction of the RE pins, even when they are

being used as analog inputs. The user must make sure

to keep the pins configured as inputs when using them

as analog inputs. The upper four bits of the TRISE

register also control the operation of the Parallel Slave

Port.

3.Master synchronous serial

port (MSSP) module
 The Master Synchronous Serial Port (MSSP) module is a

serial interface, useful for communicating with other

peripheral or microcontroller devices. These peripheral

devices may be serial EEPROMs, shift registers,display

drivers, A/D converters, etc.

 The MSSP module has three associated control

registers.These include a status register (SSPSTAT) and

two control registers (SSPCON1 and SSPCON2). The use

of these registers and their individual Configuration bits

differ significantly depending on whether the MSSP

module is operated in SPI or I2C mode.

 3.1. Registers and its initializations

The MSSP module has four registers for SPI mode

operation. These are:

• MSSP Control Register 1 (SSPCON1)

• MSSP Status Register (SSPSTAT)

• Serial Receive/Transmit Buffer Register

(SSPBUF)

• MSSP Shift Register (SSPSR) – Not directly accessible

 SSPCON1 and SSPSTAT are the control and status

registers in SPI mode operation. The SSPCON1 register is

readable and writable. The lower six bits of the SSPSTAT

are read-only.

 The upper two bits of the SSPSTAT are read/ write.

SSPSR is the shift register used for shifting data in or out.

SSPBUF is the buffer register to which data bytes are

written to or read from .In receive operations, SSPSR and

SSPBUF together create a double-buffered receiver. When

SSPSR receives a complete byte, it is transferred to

SSPBUF and the SSPIF interrupt is set .During

transmission, the SSPBUF is not double buffered .A write

to SSPBUF will write to both SSPBUF and SSPS

 3.2. SPI Master/slave Connection Typical
Connection

The master controller (Processor 1) initiates the data

transfer by sending the SCK signal .Data is shifted out

of both shift registers on their programmed clock edge

and latched on the opposite edge of the clock.

Both processors should be programmed to the same

Clock Polarity (CKP), then both controllers would send

and receive data at the same time. Whether the data is

meaningful (or dummy data) depends on the

application software. This leads to three scenarios for

data transmission:

• Master sends data – Slave sends dummy data

• Master sends data – Slave sends data.

• Master sends dummy data – Slave sends data.

3.2.1. Master and slave mode

 In Master mode, the data is transmitted /received as soon

as the SSPBUF register is written to. If the SPI is only

going to receive, the SDO output could be disabled

(programmed as an input). The SSPSR register will

continue to shift in the signal present on the SDI pin at the

programmed clock rate. As each byte is received , it will

be loaded into the SSPBUF register as if a normal received

byte (interrupts and status bits appropriately set). This

could be useful in receiver applications as a ‚Line

Activity Monitor‛ mode.

 In Slave mode, the data is transmitted and received

as the external clock pulses appear on SCK. When the last

bit is latched, the SSPIF interrupt flag bit is set. While in

Slave mode, the external clock is supplied by the external

clock source on the SCK pin.

 This external clock must meet the minimum high

and low times as specified in the electrical specifications

.While in sleep mode, the slave can transmit/receive

data. When a byte is received, the device can be

configured to wake- up from Sleep.

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

3.2.2. SPI Master/slave Connection

Figure3.1. SPI connection

3.2.3. I2C Mode

The MSSP module in I2C mode fully implements all

master and slave functions (including general call

support) and provides interrupts on Start and Stop bits in

hardware to determine a free bus (multi-master function).

The MSSP module implements the standard mode

specifications, as well as 7-bit and 10-bit addressing .Two

pins are used for data transfer:

• Serial clock (SCL) – RB1/AN10/INT1/SCK/SCL

• Serial data (SDA) – RB0/AN12/INT0/FLT0/SDI/SDA

The user must configure these pins as inputs by setting

the associated TRIS bits.

 3.2.4. Capture/Compare/PWM (CCP) module

 PIC18F2455/2550/4455/4550 devices all have two CCP

(Capture/Compare/PWM) modules. Each module

contains a 16-bit register, which can operate as a 16-bit

Capture register, a 16-bit Compare register or a PWM

Master/Slave Duty Cycle register.
3.2.5. CCP Module Configuration

Each Capture/Compare/PWM module is associated with a

control register (generically, CCP x CON) and a data

register (CCP Rx). The data register, in turn, is comprised

of two 8-bit registers: CCP Rx L (low byte) and CCP Rx H

(high byte). All registers are both readable and writable.

 The CCP modules utilize Timers 1, 2 or 3, depending

on the mode selected. Timer1 and Timer3 are available to

modules in Capture or Compare modes, while Timer2 is

available for modules in PWM mode.

3.2.6. Capture Mode

In Capture mode, the CCPR x H : CCPR x L register pair

captures the 16-bit value of the TMR1 or TMR3 registers

when an event occurs on the corresponding CCP x pin.

 The event is selected by the mode select

bits,CCPxM3:CCPxM0 (CCP x CON<3:0>). When a

capture is made, the interrupt request flag bit, CCP x IF, is

set; it must be cleared in software. If another capture

occurs before the value in register CCPRx is read, the old

captured value is overwritten by the new captured value.

3.3. PWM Generation

 Figure3.2. PWM generator block diagram.

3.3.1. PWM Output

Figure3.2. PWM generation blockdiagram and PWM

output.

In Pulse-Width Modulation (PWM) mode:

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 The CCPx pin produces up to a 10-bit resolution

PWM output. A PWM output has a time base (period)

and a time that the output stays high (duty cycle).The

frequency of the PWM is the inverse of the period

(1/period).

3.3.1. PWM period and duty cycle

The PWM period is specified by writing to the PR2

register which is given by

PWM frequency is defined as 1/[PWM period].

 When TMR2 is equal to PR2, the following three events

occur on the next increment cycle:

 TMR2 is cleared

• The CCPx pin is set (exception: if PWM duty cycle =

0%, the CCPx pin will not be set)

• The PWM duty cycle is latched from CCPRxL into

CCPRxH.
 The PWM duty cycle is specified by writing to the

CCPRxL register and to the CCPxCON<5:4> bits.

Up to 10-bit resolution is available.

 The CCPRxL contains the eight MSBs and the

CCPxCON<5:4> bits contain the two LSBs.

 CCPRxL and CCPxCON<5:4> can be written to at

anytime.But the duty cycle value is not latched

intoCCPRxH until after a match between PR2 and TMR2

occurs (i.e., the period is complete).

 In PWM mode, CCPRxH is a read-only register.

 If the PWM duty cycle value is longer than the PWM

period, the CCPx pin will not be cleared.

 The CCPRxH register and a 2-bit internal latch are

used to double-buffer the PWM duty cycle. This double-

buffering is essential for glitch less PWM operation.

 When the CCPRxH and 2-bit latch match TMR2,

concatenated with an internal 2-bit Q clock or 2 bits of the

TMR2 presale, the CCPx pin is cleared. The maximum

PWM resolution (bits) for a given PWM frequency is

given by the equation:

4. Zigbee RF module

 The XBee/XBee-PRO ZB RF Modules are designed to

operate within the ZigBee protocol and support the

unique needs of low-cost, low-power wireless sensor

networks. The modules require minimal power and

provide reliable delivery of data between remote devices.

The modules operate within the ISM 2.4 GHz frequency

band and are compatible with the following: •XBee RS-

232 Adapter •XBee RS-485 Adapter •XBee Analog I/O

Adapter •XBee Digital I/O Adapter •XBee Sensor •XBee

USB Adapter •XStick •Connect Port X Gateways •XBee

Wall Router.

 Metal objects next to the antenna or between

transmitting and receiving antennas can often block or

reduce the transmission distance. Some objects that are

often overlooked are metal poles, metal studs or beams in

structures, concrete (it is usually reinforced with metal

rods), metal enclosures, vehicles, elevators, ventilation

ducts.

4.1. Serial Communications

The XBee RF Modules interface to a host device through a

logic-level asynchronous serial port. Through its serial

port, the module can communicate with any logic and

voltage compatible UART; or through a level translator to

any serial device (for example: through a RS-232 or USB

interface board). The XBee modules maintain small

buffers to collect received serial and RF data. The serial

receive buffer collects incoming serial characters and

holds them until they can be processed. The serial

transmit buffer collects data that is received via the RF

link that will be transmitted out the UART

4.2 Serial Receive Buffer

When serial data enters the RF module through the DIN

Pin (pin 3), the data is stored in the serial receive buffer

until it can be processed. Under certain conditions, the

module may not be able to process data in the serial

receive buffer immediately. If large amounts of serial data

are sent to the module, CTS flow control may be required

to avoid overflowing the serial receive buffer.

Cases in which the serial receive buffer may become

full and possibly overflow:

 1. If the module is receiving a continuous stream of RF

data, the data in the serial receive buffer will not be

transmitted until the module is no longer receiving RF

data.

2. If the module is transmitting an RF data packet, the

module may need to discover the destination address or

establish a route to the destination. After transmitting the

data, the module may need to retransmit the data if an

acknowledgment is not received, or if the transmission is

a broad-cast. These issues could delay the processing of

data in the serial receive buffer.

4.3. Serial Transmit Buffer

When RF data is received, the data is moved into the

serial transmit buffer and sent out the UART. If the serial

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

transmit buffer becomes full enough such that all data in

a received RF packet won’t fit in the serial transmit buffer,

the entire RF data packet is dropped.

Cases in which the serial transmit buffer may become

full resulting in dropped RF packets

1. If the RF data rate is set higher than the interface data

rate of the module, the module could receive data faster

than it can send the data to the host.

2. If the host does not allow the module to transmit data

out from the serial transmit buffer because of being held

off by hardware flow control.

CTS Flow Control and RTS Flow Control

 If CTS flow control is enabled (D7 command), when

the serial receive buffer is 17 bytes away from being full,

the module de-asserts CTS (sets it high) to signal to the

host device to stop sending serial data. CTS is re-asserted

after the serial receive buffer has 34 bytes of space.

4.4. Modes of Operation
4.4.1 Idle Mode

 When not receiving or transmitting data, the RF module

is in Idle Mode. The module shifts into the other modes of

operation under the following conditions: •Transmit

Mode (Serial data in the serial receive buffer is ready to be

packetized) •Receive Mode (Valid RF data is received

through the antenna) •Sleep Mode (End Devices only)

•Command Mode (Command Mode Sequence is issued

4.4.2. Transmit Mode

When serial data is received and is ready for

packetization, the RF module will exit Idle Mode and

attempt to transmit the data. The destination address

determines which node(s) will receive the data. Prior to

transmitting the data, the module ensures that a 16-bit

network address and route to the destination node have

been established. If the destination 16-bit network address

is not known, network address discovery will take place.

 If a route is not known, route discovery will take

place for the purpose of establishing a route to the

destination node. If a module with a matching network

address is not discovered, the packet is discarded. The

data will be transmitted once a route is established. If

route discovery fails to establish a route, the packet will

be discarded.

4.5. ZigBee Security Model

ZigBee security is applied to the Network and APS layers.

Packets are encrypted with 128-bit AES encryption. A

network key and optional link key can be used to encrypt

data. Only devices with the same keys are able to

communicate together in a network. Routers and end

devices that will communicate on a secure network must

obtain the correct security keys.

ZigBee end devices are intended to be battery-powered

devices capable of sleeping for extended periods of time.

Since end devices may not be awake to receive RF data at

a given time, routers and coordinators are equipped with

additional capabilities (including packet buffering and

extended transmission timeouts) to ensure reliable data

delivery to end devices. ZigBee defines a trust center

device that is responsible for authenticating devices that

join the network. The trust center also manages link key

distribution in the network.

4.5.1. Message integrity Code

 If APS security is enabled, the APS header and data

payload are authenticated with 128-bit AES. A hash is

performed on these fields and appended as a 4-byte

message integrity code (MIC) to the end of the packet.

This MIC is different than the MIC appended by the

network layer. The MIC allows the destination device to

ensure the message has not been changed. If the

destination device receives a packet and the MIC does not

match the destination device’s own hash of the data, the

packet is dropped.

4.5.2. Network Layer Security

 The network key is used to encrypt the APS layer and

application data. In addition to encrypting application

messages, network security is also applied to route

request and reply messages, APS commands, and ZDO

commands. Network encryption is not applied to MAC

layer transmissions such as beacon transmissions, etc. If

security is enabled in a network, all data packets will be

encrypted with the network key. Packets are encrypted

and authenticated using 128-bit AES. This is shown in the

figure below.

Figure 4: Network security layer

 5. Software used
5.1. C# Programming Language

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 C# is an object-oriented programming language

developed by Microsoft Corporation. C# source code as

well as those of other .NET languages is compiled into an

intermediate byte code called Microsoft Intermediate

Language. C# is primarily derived from the C, C++, and

Java programming languages with some features of

Microsoft's Visual Basic in the mix. C# is used to develop

applications for the Microsoft .NET environment. .NET

offers an alternative to Java development. Microsoft's

Visual Studio .NET development environment

incorporates several different languages including

ASP.NET, C#, C++, and J# (Microsoft Java for .NET), all of

which compile to the Common Language Runtime.

 The C# code that we write is supported on Microsoft

Visual studio 2008 and we handle all our operations by

this code. Through this code we not only open the serial

port and perform input and output operations but also

receive analog values and cause their conversion to

digital values and display them as well as transmit them

to the microcontroller.

What is most important is that through this code we are

able to vary the frequency and duty cycle of our PWM

signal and also send the microcontroller the changes so

that it can communicate with the remote terminal where

the power of the appliance can be varied.

5.2. IDE: MPLAB from microchip

MPLAB X IDE is a software program that runs on a PC

(Windows®, Mac OS®, Linux®) to develop applications for

Microchip microcontrollers and digital signal controllers.

It is called an Integrated Development Environment, or

IDE, because it provides a single integrated

‚environment‛ to develop code for embedded

microcontrollers.

 The peripherals and the amount of memory an

application needs to run a program largely determines

which PICmicro MCU to use. Other factors might include

the power consumed by the microcontroller and its ‚form

factor,‛ i.e., the size and characteristics of the physical

package that must reside on the target design.

A development system for embedded controllers is a

system of programs running on a desktop PC to help

write, edit, debug and program code – the intelligence of

embedded systems applications – into a microcontroller.

MPLAB IDE, runs on a PC and contains all the

components needed to design and deploy embedded

systems applications.

5.3. Used in Testing

Once the code builds with no errors, it needs to be tested.

MPLAB IDE has components called ‚debuggers‛ and free

software simulators for all PICmicro and dsPIC devices to

help test the code. Even if the hardware is not yet

finished, you can begin testing the code with the

simulator, a software program that simulates the

execution of the microcontroller. The simulator can accept

a simulated input (stimulus), in order to model how the

firmware responds to external signals. The simulator can

measure code execution time, single-step through code to

watch variables and peripherals, and trace the code to

generate a detailed record of how the program ran.

 Once the hardware is in a prototype stage, a

hardware debugger, such as MPLAB ICE or MPLAB ICD

2 can be used. These debuggers run the code in real time

on your actual application. The MPLAB ICE physically

replaces the microcontroller in the target using a high-

speed probe to give you full control over the hardware in

your design.

 The MPLAB ICD 2 uses special circuitry built into

many Microchip MCUs with Flash program memory and

can ‚see into‛ the target microcontrollers program and

data memory. The MPLAB ICD 2 can stop and start

program execution, allowing you to test the code with the

microcontroller in place on the application.

5.4. Microsoft Visual Studio 2008

 Microsoft Visual Studio is an integrated development

environment (IDE) from Microsoft. It can be used to

develop console and graphical user interface applications

along with Windows Forms applications, web sites, web

applications, and web services in both native code

together with managed code for all platforms supported

by Microsoft Windows, Windows Mobile, Windows CE,

.NET Framework, .NET Compact Framework and

Microsoft Silver light.

 Visual Studio includes a code editor supporting

IntelliSense as well as code refactoring. The integrated

debugger works both as a source-level debugger and a

machine-level debugger.

 It accepts plug-ins that enhance the functionality at

almost every level—including adding support for source-

control systems (like Subversion and Visual SourceSafe)

and adding new toolsets like editors and visual designers

for domain-specific languages or toolsets for other aspects

of the software development lifecycle.

Features
5.5 Code editor

 Visual Studio, like any other IDE, includes a code editor

that supports syntax high lighting and code completion

using IntelliSense for not only variables, functions and

methods but also language constructs like loops and

queries.

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 8
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 IntelliSense is supported for the included languages, as

well as for XML and for Cascading Style Sheets and

JavaScript when developing web sites and web

applications. Auto complete suggestions are popped up

in a modeless list box, overlaid on top of the code editor.

In Visual Studio 2008 onwards, it can be made

temporarily semi-transparent to see the code obstructed

by it. The code editor is used for all supported languages.

5.6. Debugger

Visual Studio includes a debugger that works both as a

source-level debugger and as a machine-level debugger.

It works with both managed code as well as native code

and can be used for debugging applications written in

any language supported by Visual Studio. In addition, it

can also attach to running processes and monitor and

debug those processes. If source code for the running

process is available, it displays the code as it is being run.

If source code is not available, it can show the

disassembly. The Visual Studio debugger can also create

memory dumps as well as load them later for debugging.

Multi-threaded programs are also supported. The

debugger can be configured to be launched when an

application running outside the Visual Studio

environment crashes.

5.7. Docklight RS232 Terminal

 Docklight can send out user-defined sequences according

to the protocol used and it can react to incoming

sequences. This makes it possible to simulate the behavior

of a serial communication device, which is particularly

useful for generating test conditions that are hard to

reproduce with the original device (e.g. problem

conditions).

 Figure 5.1.Simulated device

5.7. Detecting specific data sequences

In many test cases you will need to check for a specific

sequence within the RS232 data that indicates a problem

condition. Dock light manages a list of such data sequences

for you and is able to perform user-defined actions after

detecting a sequence, e.g. taking a snapshot of all

communication data before and after the error message was

received.

 Figure5.2. Test protocol

5.8. Logging RS232 data

All serial communication data can be logged using two

different file formats: use plain text format for fast logging

and storing huge amounts of data. Or create a HTML file

with styled text that lets you easily distinguish between

incoming and outgoing data or additional information .

6. Future enhancement

1. With advancements in Zigbee protocol, the range which

is a major operational barrier can be increased.

2. Along with the Zigbee Coordinator and Zigbee End

Device, if we connect a router then our setup can work for

many remote terminals.

3. They can be used in industrial control rooms in order to

handle the appliances by sending PWM signals from a

distance and use this idea in a productive manner.

4. It is really effective as a control device when the end

applications are to be controlled from a distance i.e. in case

of harsh environments. Ex: industrial heaters, lighting etc.

5. Wireless measuring of analog data for example as we can

connect a temperature sensor cum logger, gas sensor etc.

6. We can achieve a better resolution by increasing it up to

10 bit.

7. Since it has a better range as we use Zigbee, our design

can perform switching application to appliances from a

distance. Data can be read from and written to as we need

for Digital Processing.

9.4 CONCLUSION

The signal generated out of this module can be used in

any 8/16/32 bit embedded system for rapid prototyping/

debugging. This unit has the capability to vary the

parameters of the PWM by which we can vary the signal

power supplied to the end users. More flexibility in our

approach as we can modify the execution code as and

when needed to add new utilities. Less hardware and

time involved in the generation of PWM than

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 9
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

conventional ways. Apart from this the unit will also have

the capability to monitor the digital I/O lines and analog

values from the remote terminal.

Today we have learned to upgrade our daily life

applications with new technologies. We have made an

effort to provide a design which can be used in a number

of ways as per the requirement. It can provide industrial

applications as well as being equally effective in a simple

house hold. For example, we can use our simple unit to

control a heater at home. It can set two thresholds and by

the help of our temperature sensor, we can detect if the

temperature has gone up to the upper threshold and by

the help of the relays in our design we can switch off the

heater. So it comes so handy in a simple household.

Similarly, we have control application of our unit in

industrial heating and gas furnaces, lighting, motors etc.

From a distant control room, we can vary the power of

the appliances as well as monitor the temperature and gas

levels etc and according to our real time deadlines, can

turn it off using the relays or reduce power applied to it

by using our PWM module.

Hence we see how our embedded unit handles a lot

of functionalities with simplified hardware and with a

high accuracy rate. It also reduces manpower and

hazardous results. So we have achieved what we had

aimed for and we can really put it to use effectively.

BIBLIOGRAPHY

*1+ T. Kikuchi, T. Kenjo, and S. Fukuda, ‚Remote laboratory for a

 brushless dc motor,‛ IEEE Trans. Educ., vol. 44, May 2001.

[2] A. Hattori, N. Suzuki, S. Suzuki, A. Takatsu, M. P. Bauer, A.

Hirner, S.Takahashi, S. Kobayashi, Y. Yamazaki, Y. Adachi, T.

Kumano, and A.Ikemoto, ‚Tele-virtual surgery with sharing tactile

sensations between Japan and Germany,‛ in Proc. 22nd Annu. Int.

Conf. IEEE Engineering Medicine Biology Soc., Chicago, IL, July 23–

28, 2000, pp. 2423–2425.

[3] Palloff R. and Pratt K., The Virtual Student - A Profile and

Guide to Working with Online Learners, Jossey- Bass, 2003, ISBN

0-7879- 6474-3

 *4+ I.A. Grout, J.Walsh, T. O’Shea and M. Canavan, A Local and

 Remote Laboratory User Experimentation Access Arrangement

using Digital Programmable Logic , Proceedings of the Remote

Engineering and Virtual Instrumentation Symposium (REV 2004),

September 2004, Villach, Austria

[5] J. Murphy, I. Grout, J. Walsh, and T. O'Shea, Local and Remote

Laboratory User Experimentation Access using Digital

Programmable Logic, International Journal of Online Engineering,

vol. 1, October 2005, http://www.i-joe.com

[6] Rohrig, C. and Jochheim, A., The Virtual Lab for controlling real

experiments via Internet, Proceedings of the IEEE International

Symposium on Computer Aided Control System Design, 1999, pp

279-284

[7] Best R. E., Phase-locked loops: theory, design, and

 applications, 1984,ISBN 0070050503

[8] Rohde U.L., Digital PLL frequency synthesizers: theory and

 design, Prentice-Hall, London, 1983, ISBN 0132142392

[9] Burbidge, M.J. and Richardson, A.M., S imple digital test

approach for embedded c harge-pump phase-locked loops,

Electronics Letters, Volume 37, Issue 22, 25th October 2001, pp 1318-

1319

[10]. ieeexplore.ieee.org (for information on signal generators)

[11]http://www.matrixmultimedia.com,www.sparkfun.com/datash

 eets/Wireless/Zigbee/XBee-2.5-Datasheet (for Zigbee module)

[12]www.sourcecodeonline.com/list?q=embedded_system_projects

 _on_ieee_paper

[13].www.ieeepaper.com/free-ieee-papers-embedded-system-

 31.htm

[14]http://www.alibaba.com/RS232

http://www.matrixmultimedia.com,www.sparkfun.com/datash%20%20%20%20eets/Wi
http://www.matrixmultimedia.com,www.sparkfun.com/datash%20%20%20%20eets/Wi
http://www.sourcecodeonline.com/list?q=embedded_system_projects%20%20%20%20%20%20%20%20%20%20%20%20_on_ieee_paper
http://www.sourcecodeonline.com/list?q=embedded_system_projects%20%20%20%20%20%20%20%20%20%20%20%20_on_ieee_paper
http://www.alibaba.com/RS232

